Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
J Neurol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589629

RESUMO

Multimodal biomarkers may identify former contact sports athletes with repeated concussions and at risk for dementia. Our study aims to investigate whether biomarker evidence of neurodegeneration in former professional athletes with repetitive concussions (ExPro) is associated with worse cognition and mood/behavior, brain atrophy, and altered functional connectivity. Forty-one contact sports athletes with repeated concussions were divided into neurodegenerative biomarker-positive (n = 16) and biomarker-negative (n = 25) groups based on positivity of serum neurofilament light-chain. Six healthy controls (negative for biomarkers) with no history of concussions were also analyzed. We calculated cognitive and mood/behavior composite scores from neuropsychological assessments. Gray matter volume maps and functional connectivity of the default mode, salience, and frontoparietal networks were compared between groups using ANCOVAs, controlling for age, and total intracranial volume. The association between the connectivity networks and sports characteristics was analyzed by multiple regression analysis in all ExPro. Participants presented normal-range mean performance in executive function, memory, and mood/behavior tests. The ExPro groups did not differ in professional years played, age at first participation in contact sports, and number of concussions. There were no differences in gray matter volume between groups. The neurodegenerative biomarker-positive group had lower connectivity in the default mode network (DMN) compared to the healthy controls and the neurodegenerative biomarker-negative group. DMN disconnection was associated with increased number of concussions in all ExPro. Biomarkers of neurodegeneration may be useful to detect athletes that are still cognitively normal, but with functional connectivity alterations after concussions and at risk of dementia.

2.
Stroke ; 55(3): 613-621, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38328926

RESUMO

BACKGROUND: Impaired cerebrovascular reactivity (CVR) has been correlated with recurrent ischemic stroke. However, for clinical purposes, most CVR techniques are rather complex, time-consuming, and lack validation for quantitative measurements. The recent adaptation of a standardized hypercapnic stimulus in combination with a blood-oxygenation-level-dependent (BOLD) magnetic resonance imaging signal as a surrogate for cerebral blood flow offers a potential universally comparable CVR assessment. We investigated the association between impaired BOLD-CVR and risk for recurrent ischemic events. METHODS: We conducted a retrospective analysis of patients with symptomatic cerebrovascular large vessel disease who had undergone a prospective hypercapnic-challenged BOLD-CVR protocol at a single tertiary stroke referral center between June 2014 and April 2020. These patients were followed up for recurrent acute ischemic events for up to 3 years. BOLD-CVR (%BOLD signal change per mm Hg CO2) was calculated on a voxel-by-voxel basis. Impaired BOLD-CVR of the affected (ipsilateral to the vascular pathology) hemisphere was defined as an average BOLD-CVR, falling 2 SD below the mean BOLD-CVR of the right hemisphere in a healthy age-matched reference cohort (n=20). Using a multivariate Cox proportional hazards model, the association between impaired BOLD-CVR and ischemic stroke recurrence was assessed and Kaplan-Meier survival curves to visualize the acute ischemic stroke event rate. RESULTS: Of 130 eligible patients, 28 experienced recurrent strokes (median, 85 days, interquartile range, 5-166 days). Risk factors associated with an increased recurrent stroke rate included impaired BOLD-CVR, a history of atrial fibrillation, and heart insufficiency. After adjusting for sex, age group, and atrial fibrillation, impaired BOLD-CVR exhibited a hazard ratio of 10.73 (95% CI, 4.14-27.81; P<0.001) for recurrent ischemic stroke. CONCLUSIONS: Among patients with symptomatic cerebrovascular large vessel disease, those exhibiting impaired BOLD-CVR in the affected hemisphere had a 10.7-fold higher risk of recurrent ischemic stroke events compared with individuals with nonimpaired BOLD-CVR.


Assuntos
Fibrilação Atrial , Transtornos Cerebrovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Infarto Cerebral , Hipercapnia/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia
3.
Cerebrovasc Dis ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228105

RESUMO

INTRODUCTION: Post-stroke dysphagia and communication impairments occur in two-thirds of acute stroke survivors. Identifying the shared neuroanatomical substrate for related impairments could facilitate the development of cross-system therapies. Our purpose was to elucidate discrete brain regions predictive of the combined presence of dysphagia alongside dysarthria and/or aphasia post-stroke. METHODS: We included 40 right (RHS) and 67 left hemisphere (LHS) patients from an acute ischemic stroke cohort with lesions demarcated on diffusion weighted imaging. We undertook binary non-parametric voxel-lesion symptom mapping with a false discovery rate of p <0.05 for co-occurring dysphagia, dysarthria, and aphasia (LHS only). If no voxels survived the threshold, a cluster analysis of >20 voxels involving an uncorrected p <0.01 was applied to identify brain regions associated with the co-occurring impairments. RESULTS: Cluster analyses revealed that dysphagia and dysarthria were associated with insular and superior temporal gyrus (STG) involvement after RHS and with basal ganglia (BG), internal capsule, and thalamic involvement after LHS. Co-occurring dysphagia, dysarthria, and aphasia were associated with BG, STG, and insular cortex involvement. DISCUSSION: Our findings highlight the role of the insula and structures of the BG in co-occurrence patterns involving dysphagia, dysarthria, and aphasia. These newly identified biomarkers may inform new rehabilitation therapeutic targets for treating cross-system functions.

4.
J Vasc Surg ; 79(2): 436-447, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37619916

RESUMO

OBJECTIVE: Substantial controversy exists regarding asymptomatic carotid stenosis (ACS) and its potential role in the pathophysiology of cognitive impairment. If proven, this hypothesis may suggest an additional definition for symptomatic carotid disease that would alter current management. This study aimed to synthesize the literature evaluating the relationship between impaired cerebral hemodynamics and cognition in patients with ACS. METHODS: A literature search was performed using MEDLINE, Embase, and EBM Reviews through May 2022. We included prospective case-control studies that used validated, objective measure(s) of either global cognition or one or more domains of cognitive function and assessed cerebrovascular reserve (CVR). RESULTS: Five studies were included, comprising a total of 782 patients with moderate (50%-69%) to severe (70%-99%) ACS. Patients with ACS and impaired ipsilateral CVR demonstrated significant cognitive impairment compared with controls. Patients with unilateral or bilateral ACS and normal CVR had cognitive scores similar to controls. Those with bilateral CVR impairment demonstrated the lowest cognitive scores. CONCLUSIONS: This review lends support to the claim that cognitive impairment, likely the result of impaired cerebral hemodynamics, is an under-recognized morbidity in patients with ACS. CVR may serve as an additional tool to determine whether patients are in fact symptomatic from their carotid stenosis and warrant consideration for intervention.


Assuntos
Estenose das Carótidas , Humanos , Estenose das Carótidas/complicações , Estenose das Carótidas/diagnóstico por imagem , Ultrassonografia Doppler Transcraniana , Circulação Cerebrovascular , Hemodinâmica/fisiologia , Cognição
5.
Can J Neurol Sci ; 51(1): 57-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36624923

RESUMO

BACKGROUND: In patients with intracranial steno-occlusive disease (SOD), the risk of hemodynamic stroke depends on the poststenotic vasodilatory reserve. Cerebrovascular reactivity (CVR) is a test for vasodilatory reserve. We tested for vasodilatory reserve by using PETCO2 as the stressor, and Blood Oxygen Level Dependent (BOLD) MRI as a surrogate of blood flow. We correlate the CVR to the incidence of stroke after a 1-year follow-up in patients with symptomatic intracranial SOD. METHODS: In this retrospective study, 100 consecutive patients with symptomatic intracranial SOD that had undergone CVR testing were identified. CVR was measured as % BOLD MR signal intensity/mmHg PETCO2. All patients with normal CVR were treated with optimal medical therapy; those with abnormal CVR were offered revascularization where feasible. We determined the incidence of stroke at 1 year. RESULTS: 83 patients were included in the study. CVR was normal in 14 patients and impaired in 69 patients ipsilateral to the lesion. Of these, 53 underwent surgical revascularization. CVR and symptoms improved in 86% of the latter. The overall incidence of stroke was 4.8 % (4/83). All strokes occurred in patients with impaired CVR (4/69; 2/53 in the surgical group, all in the nonrevascularized hemisphere), and none in patients with normal CVR (0/14). CONCLUSION: Our study confirms that CO2-BOLD MRI CVR can be used as a brain stress test for the assessment of cerebrovascular reserve. Impaired CVR is associated with a higher incidence of stroke and normal CVR despite significant stenosis is associated with a low risk for stroke.


Assuntos
Dióxido de Carbono , Acidente Vascular Cerebral , Humanos , Estudos Retrospectivos , Teste de Esforço , Circulação Cerebrovascular/fisiologia , Encéfalo , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/epidemiologia , Imageamento por Ressonância Magnética , Hemodinâmica
6.
J Am Heart Assoc ; 12(24): e029491, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38084716

RESUMO

BACKGROUND: Staging of hemodynamic failure (HF) in symptomatic patients with cerebrovascular steno-occlusive disease is required to assess the risk of ischemic stroke. Since the gold standard positron emission tomography-based perfusion reserve is unsuitable as a routine clinical imaging tool, blood oxygenation level-dependent cerebrovascular reactivity (BOLD-CVR) with CO2 is a promising surrogate imaging approach. We investigated the accuracy of standardized BOLD-CVR to classify the extent of HF. METHODS AND RESULTS: Patients with symptomatic unilateral cerebrovascular steno-occlusive disease, who underwent both an acetazolamide challenge (15O-)H2O-positron emission tomography and BOLD-CVR examination, were included. HF staging of vascular territories was assessed using qualitative inspection of the positron emission tomography perfusion reserve images. The optimum BOLD-CVR cutoff points between HF stages 0-1-2 were determined by comparing the quantitative BOLD-CVR data to the qualitative (15O-)H2O-positron emission tomography classification using the 3-dimensional accuracy index to the randomly assigned training and test data sets with the following determination of a single cutoff for clinical application. In the 2-case scenario, classifying data points as HF 0 or 1-2 and HF 0-1 or 2, BOLD-CVR showed an accuracy of >0.7 for all vascular territories for HF 1 and HF 2 cutoff points. In particular, the middle cerebral artery territory had an accuracy of 0.79 for HF 1 and 0.83 for HF 2, whereas the anterior cerebral artery had an accuracy of 0.78 for HF 1 and 0.82 for HF 2. CONCLUSIONS: Standardized and clinically accessible BOLD-CVR examinations harbor sufficient data to provide specific cerebrovascular reactivity cutoff points for HF staging across individual vascular territories in symptomatic patients with unilateral cerebrovascular steno-occlusive disease.


Assuntos
Acetazolamida , Transtornos Cerebrovasculares , Humanos , Tomografia por Emissão de Pósitrons/métodos , Artéria Cerebral Média , Hemodinâmica , Circulação Cerebrovascular , Imageamento por Ressonância Magnética/métodos
7.
J Magn Reson Imaging ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135486

RESUMO

BACKGROUND: Cerebrovascular reactivity (CVR) is a measure of the change in cerebral blood flow (CBF) in response to a vasoactive challenge. It is a useful indicator of the brain's vascular health. PURPOSE: To evaluate the factors that influence successful and unsuccessful CVR examinations using precise arterial and end-tidal partial pressure of CO2 control during blood oxygen level-dependent (BOLD) MRI. STUDY TYPE: Retrospective. SUBJECTS: Patients that underwent a CVR between October 2005 and May 2021 were studied (total of 1162 CVR examinations). The mean (±SD) age was 46.1 (±18.8) years, and 352 patients (43%) were female. FIELD STRENGTH/SEQUENCE: 3 T; T1-weighted images, T2*-weighed two-dimensional gradient-echo sequence with standard echo-planar readout. ASSESSMENT: Measurements were obtained following precise hypercapnic stimuli using BOLD MRI as a surrogate of CBF. Successful CVR examinations were defined as those where: 1) patients were able to complete CVR testing, and 2) a clinically useful CVR map was generated. Unsuccessful examinations were defined as those where patients were not able to complete the CVR examination or the CVR maps were judged to be unreliable due to, for example, excessive head motion, and poor PET CO2 targeting. STATISTICAL ANALYSIS: Successful and unsuccessful CVR examinations between hypercapnic stimuli, and between different patterns of stimulus were compared with Chi-Square tests. Interobserver variability was determined by using the intraclass correlation coefficient (P < 0.05 is significant). RESULTS: In total 1115 CVR tests in 662 patients were included in the final analysis. The success rate of generating CVR maps was 90.8% (1012 of 1115). Among the different hypercapnic stimuli, those containing a step plus a ramp protocol was the most successful (95.18%). Among the unsuccessful examinations (9.23%), most were patient related (89.3%), the most common of which was difficulty breathing. DATA CONCLUSION: CO2 -BOLD MRI CVR studies are well tolerated with a high success rate. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 3.

8.
Mov Disord ; 38(11): 2125-2131, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37792643

RESUMO

BACKGROUND: Misfolded α-synuclein in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) can be detected using the real-time quaking-induced conversion (RT-QuIC) technique in cerebrospinal fluid (CSF). OBJECTIVES: The objectives are (1) to examine misfolded CSF α-synuclein incidence, and (2) to compare clinical presentation, sports history, brain volumes, and RT-QuIC α-synuclein positivity in former athletes. METHODS: Thirty former athletes with magnetic resonance imaging, neuropsychological testing, and CSF analyzed for phosphorylated tau 181 (p-tau), total tau (t-tau), amyloid-ß 42 (Aß42), and neurofilament light chain (NfL). CSF α-synuclein was detected using RT-QuIC. RESULTS: Six (20%) former athletes were α-synuclein positive. α-Synuclein positive athletes were similar to α-synuclein negative athletes on demographics, sports history, clinical features, CSF p-tau, t-tau, Aß42, and NfL; however, had lower grey matter volumes in the right inferior orbitofrontal, right anterior insula and right olfactory cortices. CONCLUSIONS: α-Synuclein RT-QuIC analysis of CSF may be useful as a prodromal biofluid marker of PD and DLB. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Humanos , alfa-Sinucleína/líquido cefalorraquidiano , Doença por Corpos de Lewy/líquido cefalorraquidiano , Doença de Parkinson/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Atletas
9.
Healthcare (Basel) ; 11(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628429

RESUMO

Cerebrovascular Reactivity (CVR) is a provocative test used with Blood oxygenation level-dependent (BOLD) Magnetic Resonance Imaging (MRI) studies, where a vasoactive stimulus is applied and the corresponding changes in the cerebral blood flow (CBF) are measured. The most common clinical application is the assessment of cerebral perfusion insufficiency in patients with steno-occlusive disease (SOD). Globally, millions of people suffer from cerebrovascular diseases, and SOD is the most common cause of ischemic stroke. Therefore, CVR analyses can play a vital role in early diagnosis and guiding clinical treatment. This study develops a convolutional neural network (CNN)-based clinical decision support system to facilitate the screening of SOD patients by discriminating between healthy and unhealthy CVR maps. The networks were trained on a confidential CVR dataset with two classes: 68 healthy control subjects, and 163 SOD patients. This original dataset was distributed in a ratio of 80%-10%-10% for training, validation, and testing, respectively, and image augmentations were applied to the training and validation sets. Additionally, some popular pre-trained networks were imported and customized for the objective classification task to conduct transfer learning experiments. Results indicate that a customized CNN with a double-stacked convolution layer architecture produces the best results, consistent with expert clinical readings.

10.
J Cereb Blood Flow Metab ; 43(12): 2085-2095, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37632334

RESUMO

Evaluation of cerebrovascular reactivity (CVR) to hypo- and hypercapnia is a valuable test for the assessment of vasodilatory reserve. While hypercapnia-induced CVR testing is usually performed at normoxia, mild hyperoxia may increase tolerability of hypercapnia by reducing the ventilatory distress. However, the effects of mild hyperoxia on CVR was unknown. We therefore recruited 21 patients with a range of steno-occlusive diseases and 12 healthy participants who underwent a standardized 13-minute step plus ramp CVR test with a carbon dioxide gas challenge at the subject's resting end-tidal partial pressure of oxygen or at mild hyperoxia (PetO2 = 150 mmHg) depending on to which group they were assigned. In 11 patients, the second CVR test was at normoxia to examine test-retest differences. CVR was defined as % Δ Signal/ΔPetCO2. We found that there was no significant difference between CVR test results conducted at normoxia and at mild hyperoxia for participants in Groups 1 and 2 for the step and ramp portion. We also found no difference between test and retest CVR at normoxia for patients with cerebrovascular pathology (Group 3) for step and ramp portion. We concluded normoxic CVR is repeatable, and that mild hyperoxia does not affect CVR.


Assuntos
Hipercapnia , Hiperóxia , Humanos , Oxigênio/metabolismo , Pressão Parcial , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Dióxido de Carbono/metabolismo , Encéfalo/irrigação sanguínea
11.
Front Neuroimaging ; 2: 1048652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554650

RESUMO

Introduction: Dynamic susceptibility contrast (DSC) MRI allows clinicians to determine perfusion parameters in the brain, such as cerebral blood flow, cerebral blood volume, and mean transit time. To enable quantification, susceptibility changes can be induced using gadolinium (Gd) or deoxyhemoglobin (dOHb), the latter just recently introduced as a contrast agent in DSC. Previous investigations found that experimental parameters and analysis choices, such as the susceptibility amplitude and partial volume, affect perfusion quantification. However, the accuracy and precision of DSC MRI has not been systematically investigated, particularly in the lower susceptibility range. Methods: In this study, we compared perfusion values determined using Gd with values determined using a contrast agent with a lower susceptibility-dOHb-under different physiological conditions, such as varying the baseline blood oxygenation and/or magnitude of hypoxic bolus, by utilizing numerical simulations and conducting experiments on healthy subjects at 3T. The simulation framework we developed for DSC incorporates MRI signal contributions from intravascular and extravascular proton spins in arterial, venous, and cerebral tissue voxels. This framework allowed us to model the MRI signal in response to both Gd and dOHb. Results and discussion: We found, both in the experimental results and simulations, that a reduced intravascular volume of the selected arterial voxel, reduced baseline oxygen saturation, greater susceptibility of applied contrast agent (Gd vs. dOHb), and/or larger magnitude of applied hypoxic bolus reduces the overestimation and increases precision of cerebral blood volume and flow. As well, we found that normalizing tissue to venous rather than arterial signal increases the accuracy of perfusion quantification across experimental paradigms. Furthermore, we found that shortening the bolus duration increases the accuracy and reduces the calculated values of mean transit time. In summary, we experimentally uncovered an array of perfusion quantification dependencies, which agreed with the simulation framework predictions, using a wider range of susceptibility values than previously investigated. We argue for caution when comparing absolute and relative perfusion values within and across subjects obtained from a standard DSC MRI analysis, particularly when employing different experimental paradigms and contrast agents.

12.
Front Neurol ; 14: 1199805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396759

RESUMO

Background: Conventional cerebrovascular reactivity (CVR) estimation has demonstrated that many brain diseases and/or conditions are associated with altered CVR. Despite the clinical potential of CVR, characterization of temporal features of a CVR challenge remains uncommon. This work is motivated by the need to develop CVR parameters that characterize individual temporal features of a CVR challenge. Methods: Data were collected from 54 adults and recruited based on these criteria: (1) Alzheimer's disease diagnosis or subcortical Vascular Cognitive Impairment, (2) sleep apnea, and (3) subjective cognitive impairment concerns. We investigated signal changes in blood oxygenation level dependent (BOLD) contrast images with respect to hypercapnic and normocapnic CVR transition periods during a gas manipulation paradigm. We developed a model-free, non-parametric CVR metric after considering a range of responses through simulations to characterize BOLD signal changes that occur when transitioning from normocapnia to hypercapnia. The non-parametric CVR measure was used to examine regional differences across the insula, hippocampus, thalamus, and centrum semiovale. We also examined the BOLD signal transition from hypercapnia back to normocapnia. Results: We found a linear association between isolated temporal features of successive CO2 challenges. Our study concluded that the transition rate from hypercapnia to normocapnia was significantly associated with the second CVR response across all regions of interest (p < 0.001), and this association was highest in the hippocampus (R2 = 0.57, p < 0.0125). Conclusion: This study demonstrates that it is feasible to examine individual responses associated with normocapnic and hypercapnic transition periods of a BOLD-based CVR experiment. Studying these features can provide insight on between-subject differences in CVR.

13.
Quant Imaging Med Surg ; 13(7): 4618-4632, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37456328

RESUMO

Background: Prior Infarcts, Reactivity, and Angiography in Moyamoya Disease (PIRAMD) is a recently proposed imaging-based scoring system that incorporates the severity of disease and its impact on parenchymal hemodynamics in order to better support clinical management and evaluate response to intervention. In particular, PIRAMD may have merit in identifying symptomatic patients that may benefit most from revascularization. Our aim was to validate the PIRAMD scoring system. Methods: Patients with ischemic Moyamoya disease, who underwent catheter angiographic [modified Suzuki Score (mSS) and collateralization status], morphological MRI and a parenchymal hemodynamic evaluation with blood oxygenation-level dependent cerebrovascular reactivity (BOLD-CVR) at two transatlantic centers, were retrospectively included. The primary outcome was the presence of neurological symptoms. The diagnostic capacity of each PIRAMD feature alone was evaluated, as well as combined and the inter-institutional differences of each parameter were evaluated. Results: Seventy-two hemispheres of 38 patients were considered for analysis, of which 39 (54%) were classified as symptomatic. The presence of a prior infarct had the highest odds ratio [odds ratio (OR) =24; 95% CI: 6.7-87.2] for having neurological symptoms, followed by impaired CVR (OR =17; 95% CI: 5-62). No inter-institutional differences in the odds ratios or area under the curve (AUC) were found for any study parameter. The PIRAMD score had an AUC of 0.88 (95% CI: 0.80-0.96) with a similar AUC for the PIRAMD grading score. Conclusions: Our multicentric validation of the recently published PIRAMD scoring system was highly effective in rating the severity of ischemic Moyamoya disease with excellent inter-institutional agreement. Future studies should investigate the prognostic value of this novel imaging-based score in symptomatic patients with Moyamoya disease.

14.
Magn Reson Imaging ; 103: 124-130, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37481092

RESUMO

INTRODUCTION: Brain areas exhibiting negative blood oxygenation-level dependent cerebrovascular reactivity (BOLD-CVR) responses to carbon dioxide (CO2) are thought to suffer from a completely exhausted autoregulatory cerebrovascular reserve capacity and exhibit vascular steal phenomenon. If this assumption is correct, the presence of vascular steal phenomenon should subsequently result in an equal negative fMRI signal response during a motor-task based BOLD-fMRI study (increase in metabolism without an increase in cerebral blood flow due to exhausted reserve capacity) in otherwise functional brain tissue. To investigate this premise, the aim of this study was to further investigate motor-task based BOLD-fMRI signal responses in brain areas exhibiting negative BOLD-CVR. MATERIAL AND METHODS: Seventy-one datasets of patients with cerebrovascular steno-occlusive disease without motor defects, who underwent a CO2-calibrated motor task-based BOLD-fMRI study with a fingertapping paradigm and a subsequent BOLD-CVR study with a precisely controlled CO2-challenge during the same MRI examination, were included. We compared BOLD-fMRI signal responses in the bilateral pre- and postcentral gyri - i.e. Region of Interest (ROI) with the corresponding BOLD-CVR in this ROI. The ROI was determined using a second level group analysis of the BOLD-fMRI task study of 42 healthy individuals undergoing the same study protocol. RESULTS: An overall decrease in BOLD-CVR was associated with a decrease in BOLD-fMRI signal response within the ROI. For patients exhibiting negative BOLD-CVR, we found both positive and negative motor-task based BOLD-fMRI signal responses. CONCLUSION: We show that the presence of negative BOLD-CVR responses to CO2 is associated with heterogeneous motor task-based BOLD-fMRI signal responses, where some patients show -more presumed- negative BOLD-fMRI signal responses, while other patient showed positive BOLD-fMRI signal responses. This finding may indicate that the autoregulatory vasodilatory reserve capacity does not always need to be completely exhausted for vascular steal phenomenon to occur.


Assuntos
Transtornos Cerebrovasculares , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Dióxido de Carbono , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia
15.
Front Physiol ; 14: 1167857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250139

RESUMO

Introduction: Use of contrast in determining hemodynamic measures requires the deconvolution of an arterial input function (AIF) selected over a voxel in the middle cerebral artery to calculate voxel wise perfusion metrics. Transfer function analysis (TFA) offers an alternative analytic approach that does not require identifying an AIF. We hypothesised that TFA metrics Gain, Lag, and their ratio, Gain/Lag, correspond to conventional AIF resting perfusion metrics relative cerebral blood volume (rCBV), mean transit time (MTT) and relative cerebral blood flow (rCBF), respectively. Methods: 24 healthy participants (17 M) and 1 patient with steno-occlusive disease were recruited. We used non-invasive transient hypoxia-induced deoxyhemoglobin as an MRI contrast. TFA and conventional AIF analyses were used to calculate averages of whole brain and smaller regions of interest. Results: Maps of these average metrics had colour scales adjusted to enhance contrast and identify areas of high congruence. Regional gray matter/white matter (GM/WM) ratios for MTT and Lag, rCBF and Gain/Lag, and rCBV and Gain were compared. The GM/WM ratios were greater for TFA metrics compared to those from AIF analysis indicating an improved regional discrimination. Discussion: Resting perfusion measures generated by The BOLD analysis resulting from a transient hypoxia induced variations in deoxyhemoglobin analyzed by TFA are congruent with those analyzed by conventional AIF analysis.

17.
Neuroimaging Clin N Am ; 33(2): 335-342, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965950

RESUMO

Cerebrovascular reactivity (CVR) reflects the change in cerebral blood flow in response to vasodilatory stimuli enabling assessment of the health of the cerebral vasculature. Recent advances in the quantitative delivery of CO2 stimuli with computer-controlled sequential gas delivery have enabled mapping of the speed and magnitude of response to flow stimuli. These CVR advances when applied to patients with acute concussion have unexpectedly shown faster speed and greater magnitude of responses unseen in other diseases that typically show the opposite effects. The strength of the CVR alterations have diagnostic potential in single subjects with AUC values in the 0.90-0.94 range.


Assuntos
Concussão Encefálica , Imageamento por Ressonância Magnética , Humanos , Concussão Encefálica/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea
18.
ACS Chem Neurosci ; 14(2): 226-234, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36599050

RESUMO

The reliable and dynamic detection of amyloid ß-protein (Aß) deposition using imaging technology is necessary for preclinical Alzheimer's disease (AD), which may significantly improve prognosis. The present study aimed to evaluate the feasibility of applying angiopep-2 (ANG), a chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) biomarker, for monitoring Aß deposition in vivo. ANG exerted a good chemical exchange saturation transfer (CEST) effect and displayed a moderate binding affinity to Aß1-42 in vitro. Six-month-old mice with AD injected with ANG exhibited a significantly enhanced CEST effect than controls in vivo; this effect gradually became more apparent at 8, 10, and 12 months. Spatial learning impairment caused by abundant Aß deposition (representing mild cognitive impairment in AD patients) develops at 12 months in APPswe/PSEN1dE9 (line 85) AD mice. To conclude, the CEST of ANG could display very earlier age-related Aß pathological progress in mice with AD, consistent with immunohistochemistry. ANG has extraordinary potential for clinical transformation as an imaging biomarker to diagnose early AD and track its progress dynamically and nonradiationally.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Imageamento por Ressonância Magnética , Biomarcadores/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo
19.
Mult Scler ; 29(4-5): 637-641, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36703283

RESUMO

The association between trigeminal neuralgia (TN) and multiple sclerosis (MS) is well established. Many MS patients with TN have magnetic resonance imaging (MRI) evidence of a symptomatic demyelinating lesion. Although infratentorial presentations are included in the diagnostic criteria for MS, there remains confusion in clinical practice as to whether TN should be considered a clinically isolated syndrome for the application of McDonald criteria. In this case series, we discuss this diagnostic quandary in patients presenting with TN and additional MRI findings suggestive of MS and highlight the unmet need for data in such patients to optimally guide their care.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/diagnóstico , Neuralgia do Trigêmeo/patologia , Doenças Desmielinizantes/diagnóstico por imagem , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...